Name: \qquad

1. A charge of $12.7 \mu \mathrm{C}$ is placed 18.5 cm from a second charge. If the force between the charges is 25.5 N , what is the magnitude of the second charge?

$$
\begin{aligned}
F & =k q_{1} q_{2} / r^{2} \\
q_{2} & =\mathrm{F} \cdot \mathrm{r}^{2} /\left(\mathrm{k} \cdot \mathrm{q}_{1}\right) \\
& =25.5 \mathrm{~N} \cdot(0.185 \mathrm{~m})^{2} /\left(\left(9.0 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}\right) \cdot 12.7 \times 10^{-6} \mathrm{C}\right)=7.6354987 \times 10^{-6} \mathrm{C}=7.64 \mu \mathrm{C}
\end{aligned}
$$

2. 7.45×10^{17} electrons take 0.810 seconds to flow past a point in the circuit. What is the current?

$$
I=Q / t=\left(7.45 \times 10^{17} e^{-} \cdot 1.60 \times 10^{-19} \mathrm{C} / \mathrm{e}^{-}\right) / 0.810 \mathrm{~s}=0.1471604938 \mathrm{~A}=0.147 \mathrm{~A} \text { or } 147 \mathrm{~mA}
$$

3. If the current in a circuit is 0.250 A , how many electrons are flowing past a set point in 0.155 second?

$$
\begin{aligned}
& Q=I \cdot t=0.250 \mathrm{~A} \cdot 0.155 s=0.03875 \mathrm{C} \\
& \# e^{-}=0.03875 \mathrm{C} /\left(1.60 \times 10^{-19} \mathrm{C} / e^{-}\right)=2.421875 \times 10^{17} e^{-}=2.42 \times 10^{17} e^{-}
\end{aligned}
$$

4. What is the direction of current flow in a circuit? Why can this question be confusing?

Current flows from positive to negative in a circuit. This is a convention established by Ben Franklin a long time ago. This can be confusing as current is often carried by negative charges which are flowing the opposite direction of the "conventional" current.
5. A hair dryer draws 1.12 A when plugged into a 120.0 V circuit. What is its resistance?
$\mathrm{R}=\mathrm{V} / \mathrm{I}=120.0 \mathrm{~V} / 1.12 \mathrm{~A}=107.1428571 \Omega=107 \Omega$
6. A light bulb has stamped upon it the following information, " 60 W 120 V ". How much current will flow through the bulb?

$$
I=P / V=60 \mathrm{~W} / 120 \mathrm{~V}=0.5 \mathrm{~A}
$$

7. What is the resistance of a copper wire, diameter of 1.50 mm and length 25.0 m ?
$R=\rho \cdot l / A=1.68 \times 10^{-8} \Omega \cdot m \cdot 25.0 \mathrm{~m} / \pi(0.000750 \mathrm{~m})^{2}=0.2376713817 \Omega=0.238 \Omega$
8. If a kilowatt-hour costs 0.055 dollars (i.e., $\$ 0.055$ or five and a half cents), how long could $\$ 10.00$ worth of electricity operate an 1850 W toaster?
cost $=P \cdot \dagger$ rate
$t=\operatorname{cost} /(\mathrm{P} \cdot \mathrm{rate})=10 \mathrm{dollars} /(1.85 \mathrm{~kW} \cdot(0.055$ dollars $/ \mathrm{kW} \cdot \mathrm{hr}))=98.28009828 \mathrm{hr}=98.3 \mathrm{hr}$
9. A roller coaster starts from rest at the top of a hill. It goes down the hill and up a second hill that is 21.5 m above the first drop. Its speed at the top of the second hill is $19.7 \mathrm{~m} / \mathrm{s}$. How high is the initial hill?
$K E=P E$
$\frac{1}{2} m(\Delta v)^{2}=m g \Delta h$
$\Delta h=1 / 2(\Delta v)^{2} / g=0.5 \cdot(19.7 \mathrm{~m} / \mathrm{s})^{2} / 9.8 \mathrm{~m} / \mathrm{s}^{2}=19.8005102 \mathrm{~m}=19.8 \mathrm{~m}$
19.8 m higher than $2^{\text {nd }}$ hill or 41.3 m higher than first drop
10. An 85 g wooden block is set up against a spring. The block rests on a smooth surface. The block is pushed into the spring, compressing it a distance of 2.0 cm and then released. The spring constant is $\mathrm{k}=78 \mathrm{~N} / \mathrm{m}$. What is the speed of the block when it reaches its initial position (where the spring was not compressed)?
$K E=P E_{\text {spring }}$
$\frac{1}{2} m v^{2}=\frac{1}{2} k x^{2}$
$v=x(\mathrm{k} / \mathrm{m})^{\frac{1}{2}}=0.020 \mathrm{~m}(78 \mathrm{~N} / \mathrm{m} / 0.085 \mathrm{~kg})^{\frac{1}{2}}=0.6058537972 \mathrm{~m} / \mathrm{s}=0.606 \mathrm{~m} / \mathrm{s}$ or $60.6 \mathrm{~cm} / \mathrm{s}$
11. A 5.0 kg crate slides down a smooth ramp that is elevated at an angle of 38°. The length of the ramp is 2.0 m . What will be the speed of the crate at the bottom of the ramp?
$\Delta h=2.0 \mathrm{~m} \cdot \sin \left(38^{\circ}\right)=1.231322951 \mathrm{~m}$
$m g h=\frac{1}{2} m v^{2}$
$v=(2 \mathrm{gh})^{\frac{1}{2}}=\left(2 \cdot 9.8 \mathrm{~m} / \mathrm{s}^{2} \cdot 1.231322951 \mathrm{~m}\right)^{\frac{1}{2}}=4.912629625 \mathrm{~m} / \mathrm{s}=4.9 \mathrm{~m} / \mathrm{s}$
12. A 3.00 kg mass, \boldsymbol{m}_{1}, slides up a ramp. The angle for the ramp is 28.0°. The 3.00 kg mass is connected to a second mass, \boldsymbol{m}_{2}, of 3.25 kg as shown by a light string with a frictionless pulley, \&c. Coefficient of kinetic friction is 0.285 . Find (a) the acceleration of \boldsymbol{m}_{1}, (b) the kinetic energy of \boldsymbol{m}_{1} after it has traveled 25.0 cm up the ramp, and (c) the work done on \boldsymbol{m}_{1} to move it the 25.0 cm .

$\mathrm{w}_{1}=\mathrm{m}_{1} \cdot \mathrm{~g}=3.00 \mathrm{~kg} \cdot 9.8 \mathrm{~m} / \mathrm{s}^{2}=29.4 \mathrm{~N}$
$\mathrm{F}_{\mathrm{N}}=\mathrm{w}_{1} \cdot \cos 28^{\circ}=29.4 \mathrm{~N} \cdot \cos 28^{\circ}=25.95865923 \mathrm{~N}$
$F_{\text {fric }}=\mu \cdot F_{N}=0.285 \cdot 25.95865923 \mathrm{~N}=7.398217881 \mathrm{~N}$
$F_{\text {net }}=F_{2}-F_{1}-F_{\text {fric }}=3.25 \mathrm{~kg} \cdot 9.8 \mathrm{~m} / \mathrm{s}^{2}-3.00 \mathrm{~kg} \cdot 9.8 \mathrm{~m} / \mathrm{s}^{2} \cdot \sin 28^{\circ}-7.398217881 \mathrm{~N}$ $=10.64931817 \mathrm{~N}$
a. $a=F_{\text {net }} / m_{\text {sys }}=10.64931817 \mathrm{~N} / 6.25 \mathrm{~kg}=1.703890908 \mathrm{~m} / \mathrm{s}^{2}=1.70 \mathrm{~m} / \mathrm{s}^{2}$
b. $\mathrm{v}^{2}=\mathrm{v}_{\mathrm{o}}{ }^{2}+2 \mathrm{ad}=0+2 \cdot 1.703890908 \mathrm{~m} / \mathrm{s}^{2} \cdot 0.25 \mathrm{~m}=0.8519454539 \mathrm{~m}^{2} / \mathrm{s}^{2}$
$\mathrm{KE}=1 / 2 \mathrm{~m}_{1} \mathrm{v}^{2}=0.5 \cdot 3.00 \mathrm{~kg} \cdot 0.8519454539 \mathrm{~m}^{2} / \mathrm{s}^{2}=1.277918181 \mathrm{~J}=1.28 \mathrm{~J}$
c. $W=\Delta K E+\Delta P E+W_{\text {fric }}=1 / 2 m v^{2}+m g \Delta h+F_{\text {fric }} \cdot d$

$$
\begin{aligned}
& =1.277918181 \mathrm{~J}+3.00 \mathrm{~kg} \cdot 9.8 \mathrm{~m} / \mathrm{s}^{2} \cdot 0.25 \mathrm{~m} \cdot \sin 28^{\circ}+7.398217881 \mathrm{~N} \cdot 0.25 \mathrm{~m} \\
& =1.277918181 \mathrm{~J}+3.450615986 \mathrm{~J}+1.84955447 \mathrm{~J}=6.578088637 \mathrm{~J}=6.58 \mathrm{~J}
\end{aligned}
$$

